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Abstract Some composite materials, such as Zirconia-toughened ceramics, are remarkable materials which have
high strength, a high elastic modulus, and an improved toughness, etc. These good qualities are made possible
through the stress-induced phase transformation of composite particles, which is accompanied by an impact cool-
ing. When a spherical inclusion in an infinite elastic domain is suddenly subjected to an instantaneous phase
transformation, stress waves occur at the surface of a spherical inclusion at the moment thermal impact is applied.
The wave may accumulate at the center and show stress-focusing effects, even though the initial stress may be
relatively small. This paper analyzes the thermal stress-focusing effect caused by the instantaneous anisotropic
phase transformations in the spherical Zirconia inclusion. By use of ray theory, the numerical results give a clear
indication of the mechanism of stress-focusing in an inclusion embedded in an infinite elastic medium.

Keywords Thermal stress-focusing effect · Phase transformation · Solid mechanics · Spherical inclusion ·
Wave propagation

1 Introduction

The transformation toughening of ceramics has attracted considerable attention in several works [1] towards the end
of the twentieth century. The mechanism in the toughening of ceramics is the stress-induced phase transformation
of a Zirconia particle [2], which is accompanied by volumetric expansion under cooling. Due to this expansion,
the composite material consisting of Zirconia particles within a brittle matrix becomes more resistant to thermal
fracture. However, the study of the interaction between a thermal shock and a possible phase transformation in the
transformational-toughened ceramics with Zirconia particles has remained untouched so far.

In this paper a phenomenological model is proposed to describe the situation, which involves the interaction
between a thermal shock and a dynamic inhomogeneity with a stress-induced martensitic transformation in a
spherical particle of Zirconia embedded in an infinite elastic matrix.

When an infinite elastic medium with a spherical inclusion of Zirconia is suddenly subjected to impact cooling,
stress waves occur at the surface of the spherical inclusion at the moment of thermal impact. The stress wave in
an inclusion proceeds radially inward to the center of the inclusion. The wave may accumulate at the center and
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show the thermal stress-focusing effect, even though the initial thermal stress may be relatively small. Stress waves,
which develop following rapid uniform cooling of linear elastic spheres, display a thermal stress-focusing effect
as they proceed radially towards the center in this geometry. When the solid is cooled instantaneously through the
phase-transformation point of Zirconia, the stress-focusing effect should occur in the spherical inclusion by the
phase-transformational expansion and thermal contraction. It is important to note that the stress-focusing effect
induced by the phase transformation may reduce the thermal stress-focusing effect in a spherical inclusion of
Zirconia because of the antithetical volume change.

Regarding the study of the stress-focusing effect in a sphere, a closed-form solution by using the Laplace
transformation is given in the form of a series expansion in the Laplace-transformed space. The inverse Laplace
transformation of the solution, however, is very complicated. Recently Hata [3] obtained an exact solution to the
problem of stress-focusing in a uniform heated solid sphere by applying ray theory.

Hata [4] solved, in an exact manner by using ray integrals, the effects of thermal stress-focusing in a spherical
inclusion embedded in an infinite medium caused by an instantaneous phase transformation. The results give a
clear indication of the mechanism of stress-focusing in an inclusion embedded in an infinite elastic medium. How-
ever, the foregoing analysis regarding the stress-focusing effect in an inclusion is limited to the isotropic phase
transformation.

This paper analyzes the interaction between the thermal stress-focusing effect and the stress-focusing effect by
the anisotropic phase transformation in a spherical inclusion of Zirconia embedded in an infinite medium subjected
to thermal impact. By using ray theory, the Laplace-transformed solutions of stress waves in a spherical inclusion
and in an infinite medium are separated into rays according to the ray paths of multiply reflected waves. The inverse
transform of each ray leads to an exact solution of the transient response up to the arrival time of the next ray.

Following the ray method, we clarify the thermal stress-focusing effect in a spherical inclusion of Zirconia with
the anisotropic phase transformation caused by the thermal impact. It should be noted that the successive stress-wave
fronts occur in an infinite elastic medium corresponding with the stress-focusing effects in a spherical inclusion.

2 Formulation of the problem

The geometry of the problem is shown in Fig. 1. The medium and the inhomogeneity are denoted by M and I,
respectively. Consider an infinite isotropic elastic medium of M containing a spherical inclusion of I with an eigen-
strain (or transformation strain) e∗

ij (∈ �). The coefficients of thermal expansion are αI and αM for the inclusion
and the medium, respectively.

The governing equations for an inclusion [5] are

σ I
ij = ρ0I ü

I
i , σ I

ij = CI
ijkl(e

I
kl − e∗

kl − δklαI T ), eI
kl = (uI

k,l + uI
l,k)/2, (i, j, k, l = 1, 2, 3) (1)

where ρ0I , αI , δij are the mass density, the coefficient of thermal expansion in an inclusion, the Kronecker delta,
respectively, and CI

ijkl is the elastic tensor of the inclusion as follows:

CI
ijkl = µI (δikδjl + δilδjk) + λI δij δkl, (2)

where λI and µI are Lame’s constants and the comma denotes differentiation by a following variable.
The following eigenstrain e∗

ij (x, t)in the inclusion is considered as

e∗
kl(x, t) = e∗

kl(x)f (t), e∗
kl(x) =

{
e∗
kl x ∈ �

0 x ∈ (I − �)
, (3)

where f (t) is a time function. The formulation of the problem in an infinite medium is

σM
ij,j = ρ0MüM

i , σM
ij = CM

ijkl(e
M
kl − δklαMT ), eM

kl = (uM
k,l + uM

l,k)/2. (4)

For a medium with a spherical inclusion, the boundary conditions on the interface of r = a are

σ I
ij nj = σM

ij nj , uI
i = uM

i (5)

and the additional condition is that the displacement of the infinite medium at infinity is uM
i = 0.
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Thermal stress-focusing effect in a spherical Zirconia inclusion 135

Fig. 1 Coordinate system of a spherical inclusion embedded in an infinite elastic medium

The medium with a spherical inclusion is at rest prior to time t = 0 and the initial conditions of displacement are

uI
i (r, t) = uI

i (r, t),t = 0, uM
i (r, t) = uM

i (r, t),t = 0 (6)

3 Formulation of a stress problem in an inclusion with anisotropic eigenstrains

An elastic medium with an elastic inclusion is at rest prior to time t = 0 and for t > 0 the medium is instantaneously
cooled to the uniform temperature T0. The boundary and initial conditions are given by Eqs. 5 and 6, respectively.
The temperature distribution is assumed to have the following form

T (r, t) = −T0H(t) at t = 0, (7)

where H(t) is the Heaviside step function.
The associated thermal stresses and strains of Eq. 7 in the spherical inclusion are

σT
rI = σT

ϑI = σT
ϕI = (3λI + 2µI )αIT0H(t), eT

rI = eT
ϑI = eT

ϕI = −αIT0H(t). (8)

The stress–strain relations without thermal strains in a spherically symmetric coordinate system take the form

σrI = 2µI (er − e∗
r ) + λI (e − e∗), σϑI = 2µI (eθ − e∗

θ ) + λI (e − e∗), σϕI = 2µI (eϕ − e∗
ϕ) + λI (e − e∗), (9)

where σϑI = σϕI .
The strain-displacement relations of Eq. 1 are

er = ∂uI

∂r
, eθ = eϕ = uI

r
. (10)

The equation of motion of Eq. 1 is given by

∂σrI

∂r
+ 2(σrI − σϑI )

r
= ρ0I

∂2uI

∂t2 . (11)

Therefore the equation of motion is obtained as

∂2uI

∂r2 + 2

r

∂uI

∂r
− 2uI

r2 − 1

c2
I

∂2uI

∂t2 = 1 − 2νI

1 − νI

{
∂e∗

r

∂r
+ νI

1 − 2νI

∂e∗

∂r
+ 2

(
e∗
r − e∗

θ

)
r

}
, (12)

where cI is the dilatational wave speed denoted as cI = √
(λI + 2µI )/ρ0I .
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In the analysis the anisotropic eigenstrains of phase transformation in Eq. 3 are given by

e∗
r = ε1rf (t) e∗

θ = e∗
ϕ = ε2rf (t), (0 < r ≤ r0),

e∗
r = e∗

θ = e∗
ϕ = 0, (r0 < r ≤ a), (13)

where ε1 and ε2 are constants.
Under the action of phase transformation, it is assumed that the eigenstrains expand instantaneously along its

radial direction self-similarly. Therefore, the function f (t) is given by

f (t) = H(t), (14)

where H(t) is the Heaviside step function. The associated radial eigendisplacement and the associated eigenstresses
in a spherical inclusion are

u
p
I (r, t) = εpr2

4
H(t), (15)

σ
p
rI (r, t) = r{−2ε2λI + εp(λI + µI ) − ε1(λI + 2µI )}H(t), (16)

where

εp = (3 − 5ν)ε1 + 2(3νI − 1)ε2

1 − νI

. (17)

If f (t) = H(t) and r0 = a, the corresponding displacement and radial stress at the boundary of r = a at t = 0 are

u
p
I |r=a= εpa2

4
H(t), σ

p
rI |r=a= a{−2ε2λI + εp(λI + µI ) − ε1(λI + 2µI )}H(t) (18)

These displacements and stresses of Eqs. 8 and 18 do not satisfy the boundary conditions of Eq. 5 on the interface
between the spherical inclusion and the infinite medium. In order to satisfy the boundary conditions, we have to
solve an ordinary dynamic stress problem.

Here, when we introduce the displacement potential function 
S
I defined as uS

I = ∂
S
I

∂r
, the function 
S

I must
satisfy the equation

∂2
S
I

∂r2 + 2

r

∂
S
I

∂r
− 1

c2
I

∂2
S
I

∂t2 = 0. (19)

Applying the Laplace transform to Eq. 19, we can find


̄S
I (r, p) = C1

{
h

(1)
0 (ipr/cI ) + h

(2)
0 (ipr/cI )

}
, (20)

where h
(1)
0 (z) = −ieiz/z and h

(2)
0 (z) = ie−iz/z. We find the displacement and the associated radial stress in a

spherical inclusion as

ūS
I (ρ, p) = C1

{
h

(1)
0

(
ip∗ρ

)
,ρ +h

(2)
0

(
ip∗ρ

)
,ρ

}
/a,

σ̄ S
rI (ρ, p) = C1

{
−4µI

ρ

(
ip∗) h

(1)′
0

(
ip∗ρ

) + ρ0I p
2h

(1)
0

(
ip∗ρ

)}
(21)

+C1

{
−4µI

ρ

(
ip∗) h

(2)′
0

(
ip∗ρ

) + ρ0I p
2h

(2)
0

(
ip∗ρ

)}
,

where p∗ = pa/cI and ρ = r/a.

4 Formulation of a stress problem in an infinite medium

An elastic medium with an elastic inclusion is at rest prior to time t = 0 and, for t > 0, the medium is instantaneously
cooled to the uniform temperature T0. The corresponding thermal stresses and strains of Eq. 7 for an elastic infinite
medium are

σT
rM = σT

ϑM = σT
ϕM = (3λM + 2µM)αMT0H(t), eT

rM = eT
ϑM = eT

ϕM = −αIT0H(t). (22)
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Thermal stress-focusing effect in a spherical Zirconia inclusion 137

These stresses and displacements do not satisfy the boundary conditions on the interface between the spherical inclu-
sion and the infinite medium. In order to satisfy the boundary conditions, we have to solve an ordinary dynamic
stress problem.

The elastic medium with an elastic inclusion is at rest prior to time t = 0 and the initial conditions of displace-
ment are given by Eq. 6. For t > 0, the boundary conditions on the interface of r = a are given by Eq. 5 and the
additional condition is that the displacement at infinity should be uM = 0. Upon introduction of a displacement

potential φS
M defined as uM = ∂φS

M

∂r
, the equation of motion may be expressed as

∂2φS
M

∂r2 + 2

r

φS
M

∂r
= 1

c2
M

∂2φS
M

∂t2 , (23)

where cM is the dilatational wave speed denoted as cM = √
(λM + 2µM)/ρ0M . Applying the Laplace transform to

Eq. 23 and solving the transformed equations, we may give the displacement potential for the infinite medium by

φ̄S
M(r, p) = C2h

(1)
0

(
i

p

cM

r

)
. (24)

Differentiating φ̄S
M(r, p) in Eq. 24 by r , we obtain the displacement and the associated radial stress of the infinite

medium as

ūM(r, p) = C2h
(1)
0

(
i

p

cM

r

)
,r ,

¯σS
rM = C2

{
− i4µMp∗l1

ρ
h

(1)′
0

(
ip∗l1ρ

) + ρ0Mp2h
(1)
0

(
ip∗l1ρ

)}
, (25)

where p∗ = pa/cI , ρ = r/a, and l1 = cI /cM . The unknown constants C1 and C2 may be determined from the
boundary conditions of Eq. 5 with Eqs. 21 and 25 as follows;

C1(c
′
11 + c′

12) + σ̄ P
rI |r=a +σ̄ T

rI =C2c
′
13 + σ̄ T

rM, C1c21 + ū
p
I |r=a +ēT

rI a = C2ip∗l1h(1)′
0 (ip∗l1)/a + ēT

rMa, (26)

where

c′
11 = −4µIp

∗

a
h

(1)′
0 (p∗a) + ρ0I p

2h
(1)
0 (p∗a), c′

12 = −4µIp
∗

a
h

(2)′
0 (p∗a) + ρ0p

2h
(2)
0 (p∗a),

c′
13 = −4µMp∗

a
h

(1)′
0 (p∗l1a) + ρ0I p

2h
(1)
0 (p∗l1a), c21 = −p∗

{
h

(1)′
0 (p∗a) + h

(2)′
0 (p∗a)

}
.

(27)

Then Eq. 26 yields

C1 = g2(p)

c11 + c12
, C2 = g3(p)

c11 + c12
, (28)

where

g1(p) = c′
13

il1p∗h(1)′
0 (il1p∗)

, g2(p) = σ̄ T
rM − σ̄ T

rI − σ̄
p
rI |r=a + g1(p)

{ ¯eT
M − ēT

I + uP
I |r=a

}
/p,

g3(p) =
(
c′

11 + c′
12

) {
ēT
I − ēT

M + ū
p
I |r=a

} − c21
{
σ̄ T

rM − σ̄ T
rI − σ̄

p
rI |r=a

}
il1p∗h(1)′

0 (il1p∗)p
, (29)

c11 = c′
11 − g1(p)(ip∗)h(1)′

0 (ip∗), c12 = c′
12 − g1(p)(ip∗)h(2)′

0 (ip∗)

5 Stress-focusing effect in a spherical inclusion described by ray integrals

In order to analyze the wave propagation in a spherical inclusion, we apply the ray theory to Eq. 20. Substituting
Eq. 28 in Eq. 20, we obtain


S
I = g2(p)

c11 + c12

{
h

(1)
0 (ip∗ρ) + h

(2)
0 (ip∗ρ)

}
. (30)
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Here we introduce the reflection coefficient R, which is defined as R = −c11/c12. By introducing the formula
1/(1 − R) = 1 + R + R2 + · · · (|R| ≤ 1) and rewriting Eq. 30, we obtain the displacement potential for a
spherical inclusion by using the formulas of h

(1)
0 (z) = −ieiz/z and h

(2)
0 (z) = ie−iz/z as


S
I (ρ, p) =

∞∑
j=0

�̄S
j (ρ, p), (31)

where

�̄S
0 (ρ, p) = −ep∗(ρ−1)

l2
1uIM(λM + 2µM)p∗2 + (l1p

∗ + 1)
(
4µMuIM + σ IM

)
f1(p)ρ

,

�̄S
1 (ρ, p) = e−p∗(ρ+1) l

2
1uIM(λM + 2µM)p∗2 + (l1p

∗ + 1)(4µMuIM + σ IM)

f1(p)ρ
, (32)

�̄S
j (ρ, p) = R(p)�̄S

j−2(ρ, p), (j = 2, 3, 4, . . .).

The notations uIM , σ IM , and the function f1(p) in Eq. 32 are given by

uIM = (ēT
I − ēT

M)a + uP
I |r=a, σ IM = σ̄ T

rI + σ̄ P
rI |ρ=1 −σ̄ T

rM,

f1(p) = l1(λI + l1λM + 2µI + 2l1µM)p∗3 + {λI + 2µI − l1(l1λM + 4µI + 2l1µM − 4µM)}p∗2 (33)

+4(l1 − 1)(µI − µM)p∗ + 4(µI − µM).

An inspection of Eq. 32 shows that the function �̄S
0 (ρ, p) has a singularity of O(ρ−1) at ρ = 0. Hence, the

corresponding displacement has a singularity of O(ρ−2) at ρ = 0 and the corresponding stresses have a singularity
of O(ρ−3) at ρ = 0. An inspection of Eq. 32 suggests that the j th-order ray has the same order of the singularity
as the function �̄S

0 (ρ, p) at ρ = 0. Therefore the stress-focusing effects may be observed in each of the rays. Since
the inverse Laplace transforms of Eq. 32 are easily obtained by using the inverse Laplace formulas and the high-
order terms of �S

j (ρ, t) are obtained through the convolution integral, the displacement potential for the spherical
inclusion is obtained from Eq. 31 as


S
I (r, t) =

∞∑
j=0

�S
j (r, t). (34)

Finally, the total displacement and stresses in the spherical inclusion are

uI (ρ, t) = uS
I (ρ, t) + uT

I (ρ, t) + uP
I (ρ, t), σrI (ρ, t) = σS

rI (ρ, t) + σT
rI (ρ, t) + σP

rI (ρ, t),

σθI (ρ, t) = σS
θI (ρ, t) + σT

θI (ρ, t) + σP
θI (ρ, t).

(35)

6 Wave propagation in an infinite medium obtained by ray integrals

In order to analyze wave propagation in an infinite medium, we apply the ray theory to Eq. 24. Substituting Eq. 28
in Eq. 24, we obtain

φS
M(ρ, p) = g3(p)

c11 + c12
h

(1)
0 (il1p

∗ρ). (36)

Here, introducing the reflection coefficient R which is defined as R = −c11/c12 and rewriting Eq. 36, we obtain
the displacement potential for the infinite elastic medium as

φS
M(ρ, p) = g3(p)

c12
[1 + R + R2 + · · · ]h(1)

0

(
il1p

∗ρ
) =

∞∑
j=0

ϕ̄S
j (ρ, p), (37)
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where

ϕ̄S
0 (ρ, p) = −e−l1p

∗(ρ−1) u
IM(λI + 2µI )p

∗2 + (p∗ + 1)(4µIu
IM + σ IM)

f1(p)ρ
,

ϕ̄S
0 (ρ, p) = e−l1p

∗ρ+l1−2 uIM(λI + 2µI )p
∗2 + (p∗ + 1)(4µIu

IM + σ IM)

f1(p)ρ
, (38)

ϕ̄S
j (ρ, p) = R(p)ϕ̄S

j−2(ρ, p), (j = 2, 3, 4, . . .).

Since the inverse Laplace transforms of Eq. 38 are easily obtained by using the inverse Laplace formulas, the
high-order terms of ϕS

j (ρ, t) are obtained through the convolution integral. Therefore the displacement potential
for an infinite medium is derived from Eq. 37 as

φS
M(ρ, t) =

∞∑
j=0

ϕS
j (ρ, t). (39)

Finally, the total displacement and stresses in the infinite medium are

uM(ρ, t) = uS
M(ρ, t) + uT

M(ρ, t), σrM(ρ, t) = σS
rM(ρ, t) + σT

rM(ρ, t), σθM(ρ, t) = σS
θM(ρ, t) + σT

θM(ρ, t).

(40)

7 Numerical results and discussion

To show the mechanism in the toughening of ceramics subjected suddenly to an anisotropic phase transformation
caused by impact cooling, we performed numerical calculations by using the material constants as given in [6] for
a ZrO2 spherical inclusion embedded in an Al2O3 medium as

EM

EI

= 1.857,
cI

cM

= 0.632, νI = 0.3, νM = 0.25,
αI

αM

= 1.5,
uP

I | r = a

αIT0
= 0.1. (41)

In order to show a numerical comparison of the phenomena, we make a calculation for two kinds of ratio of the
tangential eigenstrain to the radial eigenstrain as follows:

Case I = ε2/ε1 = 0.01, Case II = ε2/ε1 = 100.

In case I the phase transformations in a sphere are affected mainly by the radial eigenstrains. In case II the
phase transformations in a sphere are affected mainly by the tangential eigenstrains. The results of the numerical
evaluation of the stress variation are illustrated in Figs. 2 to 5. In the figures we use the following nondimensional
variables:

σρI = σrI

ρ0I c
2
I ε1

, τ = cI t

a
(42)

The behavior shape of the radial stress in a Zirconia inclusion with phase transformation as a function of time in
Case I is illustrated in Fig. 2. The behavior shape of radial stress in a Zirconia inclusion with phase transformation
as a function of time in Case II is illustrated in Fig. 3. In Fig. 2 we can observe that the waves reflected from the
interface accumulate at the center of a spherical inclusion and give rise to very large stresses, even though the initial
thermal stresses may be relatively small. The maximum of the radial stresses peaks out periodically at an interval
of τ = 2. In Fig. 3 these stress-focusing effects in a spherical inclusion are similar to those in Case I, whereas the
peak stresses in an inclusion with phase transformation in Case II are much higher than those in Case I.

In order to investigate the stress-focusing effects at the center of a spherical inclusion, the radial stress variation
at the center of a spherical inclusion as a function of time for Case I is shown in Fig. 4 and that for Case II is shown
in Fig. 5.

In Fig. 4 the stress-focusing effects in Case I are observed at the times τ = 1, 3, 5, 7, 9 periodically. As men-
tioned before in the discussion on Eq. 32, the radial stresses have a singularity of O(ρ−3) at ρ = 0. In Fig. 5
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140 T. Hata, N. Sumi

Fig. 2 The behavior shape of the radial stress σρI in an inclu-
sion with phase transformation in Case I

Fig. 3 The behavior shape of the radial stress σρI in an
inclusion with phase transformation in Case II

Fig. 4 Stress-focusing effects of the radial stress σρI at the
center in Case I

Fig. 5 Stress-focusing effects of the radial stress σρI at the
center in Case II

we also observe the stress-focusing effects at the times τ = 1, 3, 5, 7, 9 periodically in Case II. The difference
between Figs. 4 and 5 is the initial stress distribution. Therefore, the initial stress distribution caused by the phase
transformation does not affect the stress-focusing effects at the center of the sphere. Comparing these results with
the stress-focusing effects in a spherical inclusion with the isotropic phase transformation in [4], the same type of
stress-focusing effects are observed.

8 Conclusions

The mechanism in the toughening of ceramics is the stress-induced phase transformation of a Zirconia particle,
which is accompanied by volumetric expansion under the cooling process. Due to this expansion, the composite
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Thermal stress-focusing effect in a spherical Zirconia inclusion 141

material consisting of Zirconia particles within a brittle matrix becomes more resistant to thermal fracture. However,
the study of the interaction between a thermal shock and a possible phase transformation in the phase-transforma-
tional-toughened ceramics with Zirconia particles has remained untouched. In this paper a phenomenological model
has been proposed to describe the situation, which involves the interaction between a thermal shock and a dynamic
inhomogeneity with a stress-induced martensitic transformation in a spherical particle of Zirconia embedded in an
infinite elastic matrix. When an infinite elastic medium with a spherical inclusion of Zirconia is suddenly subjected
to an impact cooling, stress waves occur at the surface of spherical inclusion at the moment thermal impact is
applied. The stress wave in an inclusion proceeds radially inwards to the center of the inclusion. The wave may
accumulate at the center and show the thermal stress-focusing effects, even though the initial thermal stress may be
relatively small.

In the paper, we conclude that the high-stress pulses induced by the stress-focusing effects in a spherical inclusion
may cause cracks at the center of a spherical inclusion. Since these cracks at the center of a spherical inclusion
may break an inclusion, the fracture may occur in an inclusion under dynamic inhomogeneity. In the steady state,
however, the fracture in the matrix with a spherical inclusion may occur at the interface of an inclusion because of
the volumetric expansion of the Zirconia inclusion. Therefore, we conclude that the stress-induced mechanism of
phase transformation in the toughening of the Aluminum Oxide ceramics with a Zirconia inclusion in the steady
state does not hold in the dynamic state.
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